Avatar of Logan

Jupiter’s Dissolving Core

3 rating, 3 votes3 rating, 3 votes (+3 rating, 3 votes, rated)
You need to be a registered member to rate this post.
Loading ... Loading ...

February 13, 2013 in Science

by

In March of 2012, scientists unlocked evidence that Jupiter’s core has been dissolving, and the implications reach far outside of our solar system. This new data may help to explain a puzzling discovery of a strange exo-planet. The planet, CoRoT-20b, was announced in February, and its discoverers searched for a suitable explanation for its unusual density. Using conventional models, the astronomers calculated that the core would have to make up over half of the planet. For comparison, Jupiter’s core only represents about between 3-15 percent of the planet’s total mass.

“It’s a really important piece of the puzzle of trying to figure out what’s going on inside giant planets,” said Jonathan Fortney, a planetary scientist at the University of California Santa Cruz who was not affiliated with the research.

Conventional planetary formation theory has modeled Jupiter as a set of neat layers with a gassy outer envelope surrounding a rocky core consisting of heavier elements. But increasing evidence has indicated that the insides of gas giants like Jupiter are a messy mixture of elements without strictly defined borders.

This new research on a melting Jovian core bolsters a mixing model of gas giant planets and would provide another avenue for heavier elements to flow throughout the planet.

“People have been working on the assumption that these planets are layered because it’s easier to work on this assumption,” said Hugh Wilson, a planetary scientist at the University of California Berkeley and a coauthor of the new research appearing in Physical Review Letters. Although scientists had previously toyed with the idea of melting cores in large planets, nobody sat down and did the necessary calculations, said Wilson.

Scientists have to rely on calculations of Jupiter’s core environment because the conditions there are far too extreme to recreate on Earth. Wilson and his UC-Berkeley colleague Burkhard Militzer used a computer program to simulate temperatures exceeding 7,000 degrees Celsius and pressures reaching 40 million times the air pressure found on Earth at sea level.

Those conditions are thought to be underestimates of the actual conditions inside Jupiter’s core. Nonetheless, the authors found that magnesium oxide — an important compound likely found in Jupiter’s core — would liquefy and begin drifting into Jupiter’s fluid upper envelope under these relatively tame conditions.

Researchers believe that similarly-sized gas giant exoplanets — planets found outside of our solar system — probably have similar internal structures to Jupiter. Consequently, scientists were baffled earlier this year when they found a planet with approximately the same volume as Jupiter yet four to five times more mass.

CoRoT-20b’s core presented a huge problem for traditional assumptions surrounding planet formation. “It’s much easier to explain the composition of this planet under a model where you have a mixed interior,” said Wilson.

The Daily Galaxy via Inside Science News Service

 

“In March of 2012, scientists unlocked evidence that Jupiter’s core has been dissolving”

Jupiter’s core spawns embryonic earths

 

“People have been working on the assumption that these planets are layered because it’s easier to work on this assumption,” said Hugh Wilson, a planetary scientist at the University of California Berkeley

Is the same true in general for the scientific assumptions of planetary formation?

 
 

Learn More Here:*Original Astronomical Planet Infowars Discovery


Infowars.com Videos:

Comment on this article:

Leave a reply

You must be logged in to post a comment.